AKD4646-B AK4646 Evaluation board Rev. 1

GENERAL DESCRIPTION

AKD4646-B is an evaluation board for the AK4646, Stereo CODEC with built-in MIC/SPK amplifier. The AKD4646-B can evaluate A/D converter and D/A converter separately in addition to loop-back mode (A/D $\rightarrow \mathrm{D} / \mathrm{A})$. The AKD4646-B also has the digital audio interface and can achieve the interface with digital audio systems via opt-connector.

■ Ordering guide

AKD4646-B --- Evaluation board for AK4646
(Cable for connecting with printer port of IBM-AT compatible PC and control software are packed with this. This control software does not operate on Windows NT.)

FUNCTION

- DIT/DIR with optical input/output
- 10pin Header for serial control mode

Figure 1. AKD4646-B Block Diagram

* Circuit diagram and PCB layout are attached at the end of this manual

Evaluation Board Manual

■ Operation sequence

1) Set up the power supply lines.

[VCC]	(red)	$=5.0 \mathrm{~V}($ or 3.3 V$)$
[AGND]	(black)	$=0 \mathrm{~V}$
[DGND]	(black)	$=0 \mathrm{~V}$

Each supply line should be distributed from the power supply unit.
When the power is supplied to the AK4646 via the regulator, JP21 should be set to "REG" side and VCC should be 5.0 V .<default> (When the power is supplied from VCC jack to the AK4646 directly, JP21 should be set to "VCC" side and VCC should be 3.3V.)
2) Set up the evaluation mode, jumper pins. (See the followings.)
3) Power on.

The AK4646 and AK4114 should be reset once bringing SW1 "L" upon power-up.

■ Evaluation mode

(1) Slave mode

(1-1) Evaluation of Recording block (MIC, ADC) using DIT of AK4114
(1-2) Evaluation of Playback block (SPK, LOUT) using DIR of AK4114
(1-3) Evaluation of Loop-back using AK4114 <Default>
(1-4) All interface signals including master clock are fed externally.
The AK4114's audio interface format is fixed to LSB Justified.
(1-1) Evaluation of Recording block using DIT of AK4114
PORT2 (DIT) and X1 (X^{\prime} tal) are used. DIT generates audio bi-phase signal from received data and which is output through optical connector (TOTX141). Nothing should be connected to PORT1 (DIR) and PORT3 (DSP).

(1-2) Evaluation of Playback block using DIR of AK4114
PORT1 (DIR) is used. Nothing should be connected to PORT3 (DSP).

The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , any other evaluation mode without using DIR should be used.

(1-3) Evaluation of Loop-back using AK4114 <Default>

X'tal oscillator (X1) is used. Nothing should be connected to PORT1 (DIR) and PORT3 (DSP).

The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , any other evaluation mode without using DIR should be used.
(1-4) All interface signals including master clock are fed externally.
PORT3 (DSP) is used. Nothing should be connected to PORT1 (DIR).

(2) Master mode

(2-1) Evaluation of Loop-back using MCLK of AK4114
(2-2) Master clock is fed externally
(2-1) Evaluation of Loop-back using MCLK of AK4114
X'tal oscillator (X1) is used. Nothing should be connected to PORT1 (DIR) and PORT3 (DSP). It can be evaluated at internal loop-back mode (LOOP bit = " 1 "). It is possible to evaluate at various sampling frequencies using built-in AK4646's PLL.

(2-2) Master clock is fed externally

PORT3 (DSP) is used and MCLK is fed from PORT3. Nothing should be connected to PORT1 (DIR). It can be evaluated at internal loop-back mode (LOOP bit $=$ " 1 "). It is possible to evaluate at various sampling frequencies using built-in AK4646's PLL.

■ Other jumper pins set up

1. JP1 (GND) : Connection between AGND and DGND.

OPEN : Both grounds are separated on board.
SHORT : Both grounds are connected on board. <Default>
2. JP2,JP3 : Connection of mic power.

OPEN: Mic power is not connected.
SHORT : Mic power is connected. <Default>
3. JP4,JP5 : Select speaker type.

OPEN : Piezo speaker
SHORT : Dynamic speaker < Default>

■ The function of the toggle SW

[SW1] (PDN): Power down of AK4646 and AK4114. Keep "H" during normal operation.

■ Indication for LED

[LED1] (ERF): Monitor INT0 pin of the AK4114. LED turns on when some error has occurred to AK4114.

■ Serial Control

The AK4646 can be controlled via the printer port (parallel port) of IBM-AT compatible PC. Connect PORT4 (CTRL) with PC by 10 wire flat cable packed with the AKD4646.

Figure 2. Connect of 10 wire flat cable

Analog Input/Output Circuits

(1) Input Circuits

1. MIN Input Circuit

Figure 3. MIN Input Circuit
2. LINE1 Input Circuit

Figure 4. LIN1/RIN1 Input Circuit
3. LINE2 Input Circuit

Figure 5. LIN2/RIN2 Input Circuit
(2) Output Circuits

1. STEREO LINE Output Circuit

Figure 6. STEREO LINE Output Circuit
2. SPEAKER Output Circuit

Figure 7. SPEAKER Output Circuit

Control Software Manual

■ Set-up of evaluation board and control software

1. Set up the AKD4646-B according to previous term.
2. Connect IBM-AT compatible PC with AKD4646-B by 10-line type flat cable (packed with AKD4646-B). Take care of the direction of 10pin header. (Please install the driver in the CD-ROM when this control software is used on Windows 2000/XP. Please refer "Installation Manual of Control Software Driver by AKM device control software". In case of Windows $95 / 98 / \mathrm{ME}$, this installation is not needed. This control software does not operate on Windows NT.)
3. Insert the CD-ROM labeled "AKD4646-B Evaluation Kit" into the CD-ROM drive.
4. Access the CD-ROM drive and double-click the icon of "AKD4646.exe" to set up the control program.
5. Then please evaluate according to the follows.

- Operation flow

Keep the following flow.

1. Set up the control program according to explanation above.
2. Click "Port Reset" button.
3. Click "Write default" button

■ Explanation of each buttons

1. [Port Reset] : Set up the port. When this is pushed, the printer port or USB port is selected automatically.
2. [Write default]: Initialize the register of the AK4646
3. [All Write]: Write all registers that is currently displayed
4. [Function1]: Dialog to write data by keyboard operation.
5. [Function2]: Dialog to evaluate IPGA and ATTL/ATTR.
6. [Function3] : The sequence of register setting can be set and executed.
7. [Function4]: The sequence that is created on [Function3] can be assigned to buttons and executed.
8. [Function5]: The register setting that is created by [SAVE] function on main window can be assigned to buttons and executed.
9.[Write]: Dialog to write data by mouse operation.
10.[SAVE]: Save the current register setting.
11.[OPEN]: Write the save values to all register.

■ Indication of data

Input data is indicated on the register map. Red letter indicates "H" or " 1 " and blue one indicates "L" or " 0 ". Blank is the part that is not defined in the datasheet.

- Explanation of each dialog

1. [Write Dialog]: Dialog to write data by mouse operation

There are dialogs corresponding to each register.
Click the [Write] button corresponding to each register to set up the dialog. If you check the check box, data becomes "H" or " 1 ". If not, "L" or " 0 ".

If you want to write the input data to the AK4646, click [OK] button. If not, click [Cancel] button.
2. [Function1 Dialog] : Dialog to write data by keyboard operation

Address Box: Input registers address in 2 figures of hexadecimal.
Data Box: Input registers data in 2 figures of hexadecimal.
If you want to write the input data to the AK4646, click [OK] button. If not, click [Cancel] button.
3. [Function2 Dialog] : Dialog to evaluate DATT

There are dialogs corresponding to register of $09 \mathrm{~h}, 0 \mathrm{Ah}, 0 \mathrm{Ch}$, and 0 Dh .
Address Box: Input registers address in 2 figures of hexadecimal.
Start Data Box: Input starts data in 2 figures of hexadecimal.
End Data Box: Input end data in 2 figures of hexadecimal.
Interval Box: Data is written to the AK4646 by this interval.
Step Box: Data changes by this step.
Mode Select Box:
If you check this check box, data reaches end data, and returns to start data.
[Example] Start Data $=00$, End Data $=09$
Data flow: 0001020304050607080909080706050403020100
If you do not check this check box, data reaches end data, but does not return to start data.
[Example] Start Data $=00$, End Data $=09$
Data flow: 00010203040506070809
If you want to write the input data to the AK4646, click [OK] button. If not, click [Cancel] button.

4. [SAVE] and [OPEN]

4-1. [SAVE]

All of current register setting values displayed on the main window are saved to the file. The extension of file name is "akr".

<Operation flow>

(1) Click [SAVE] Button.
(2) Set the file name and click [SAVE] Button. The extension of file name is "akr".

4-2. [OPEN]

The register setting values saved by [SAVE] are written to the AK4646. The file type is the same as [SAVE].
<Operation flow>
(1) Click [OPEN] Button.
(2) Select the file (*.akr) and Click [OPEN] Button.

5. [Function3 Dialog]

The sequence of register setting can be set and executed.
(1) Click [F3] Button.
(2) Set the control sequence.

Set the address, Data and Interval time. Set " -1 " to the address of the step where the sequence should be paused.
(3) Click [START] button. Then this sequence is executed.

The sequence is paused at the step of Interval=" -1 ". Click [START] button, the sequence restarts from the paused step.
This sequence can be saved and opened by [SAVE] and [OPEN] button on the Function3 window. The extension of file name is "aks".

Figure 8. Window of [F3]

6. [Function4 Dialog]

The sequence file (*.aks) saved by [Function3] can be listed up to 10 files, assigned to buttons and then executed. When [F4] button is clicked, the window as shown in Figure 10 opens.

Figure 9. [F4] window

6-1. [OPEN] buttons on left side and [START] buttons
(1) Click [OPEN] button and select the sequence file (*.aks) saved by [Function3].

The sequence file name is displayed as shown in Figure 11. (In case that the selected sequence file name is "DAC_Stereo_ON.aks")

Figure 10. [F4] window(2)
(2) Click [START] button, then the sequence is executed.

6-2. [SAVE] and [OPEN] buttons on right side
[SAVE] : The name assign of sequence file displayed on [Function4] window can be saved to the file. The file name is "*.ak4".
[OPEN] : The name assign of sequence file(*.ak4) saved by [SAVE] is loaded.

6-3. Note

(1) This function doesn't support the pause function of sequence function.
(2) All files used by [SAVE] and [OPEN] function on right side need to be in the same folder.
(3) When the sequence is changed in [Function3], the sequence file (*.aks) should be loaded again in order to reflect the change.

7. [Function5 Dialog]

The register setting file(*.akr) saved by [SAVE] function on main window can be listed up to 10 files, assigned to buttons and then executed. When [F5] button is clicked, the window as shown in Figure 12 opens.

Figure 11. [F5] window

7-1. [OPEN] buttons on left side and [WRITE] button
(1) Click [OPEN] button and select the register setting file (*.akr).

The register setting file name is displayed as shown in Figure 13. (In case that the selected file name is "DAC_Output.akr")
(2) Click [WRITE] button, then the register setting is executed.

Figure 12. [F5] windows(2)

7-2. [SAVE] and [OPEN] buttons on right side
[SAVE] : The name assign of register setting file displayed on [Function5] window can be saved to the file. The file name is "*.ak5".
[OPEN] : The name assign of register setting file(*.ak5) saved by [SAVE] is loaded.

7-3. Note

(1) All files used by [SAVE] and [OPEN] function on right side need to be in the same folder.
(2) When the register setting is changed by [SAVE] Button on the main window, the register setting file (*.akr) should be loaded again in order to reflect the change.

8. [Filter Dialog]

A calculation of a coefficient of Digital Programmable Filter such as HPF,EQ filter ,a write to a register and check frequency response such as HPF,EQ filter.
Window to show to Figure 13 opens when push a [Filter] button .

Figure13. Main Window

8-1. Setting of a parameter

(1) Please set a parameter of each Filter.

Item	Contents	Setting range
Sampling Rate	Sampling frequency (fs)	$7350 \mathrm{~Hz} \leq \mathrm{fs} \leq 48000 \mathrm{~Hz}$
FIL3		
Cut Off Frequency	Stereo separation emphasis filter cut cff frequency	fs $/ 10000 \leq$ Cut Off Frequency \leq $(0.497 * \mathrm{fs})$
Filter type	Type of stereo separation emphasis filter	LPF or HPF
Gain	Gain of stereo separation emphasis filter	$-10 \mathrm{~dB} \leq$ Gain $\leq 0 \mathrm{~dB}$
HPF		
Cut Off Frequency	High pass filter cut off frequency	$\begin{aligned} \mathrm{fs} / 10000 & \leq \text { Cut Off Frequency } \\ & \leq(0.497 * \mathrm{fs}) \end{aligned}$
LPF		
Cut Off Frequency	Low pass filter cut off frequency	$\begin{gathered} \mathrm{fs} / 20 \leq \text { Cut Off Frequency } \leq \\ (0.497 * \mathrm{fs}) \end{gathered}$
EQ for Gain Compensation (EQ0)		
Pole Frequency	Pole Frequency	$\begin{gathered} \mathrm{fs} / 10000 \leq \text { Pole Frequency } \leq \\ (0.497 * \mathrm{fs}) \end{gathered}$
Zero-point Frequency	Zero-point Frequency	$\begin{aligned} \text { fs/ } 10000 & \leq \text { Zero-point Frequency } \\ & \leq(0.497 * \mathrm{fs}) \end{aligned}$
Gain	Gain	$0 \mathrm{~dB} \leq$ Gain $\leq+12 \mathrm{~dB}$
5 Band Equalizer		
EQ1-5 Center Frequency	EQ1-5 Center Frequency	$\begin{gathered} \hline 0 \mathrm{~Hz} \leq \text { Center Frequency }<(0.497 \\ * \mathrm{fs}) \end{gathered}$
EQ1-5 Band Width	EQ1-5 Band Width (Note 1)	$1 \mathrm{~Hz} \leq$ Band Width $<(0.497 * \mathrm{fs})$
EQ1-5 Gain	EQ1-5 Gain (Note 2)	$-1 \leq$ Gain <3

Note 1. A gain difference is a bandwidth of 3 dB from center frequency.
Note 2. When a gain is smaller than 0 , EQ becomes a notch filter.
(2) "FIL3", "EQ0", "LPF", "HPF", "HPFAD", "EQ1", "EQ2", "EQ3", "EQ4", "EQ5" Please set ON/OFF of Filter with a check button. When checked it, Filter becomes ON. When checked "Notch Filter Auto Correction", perform automatic revision of center frequency of a notch filter. ("Cf. 8-4. automatic revision of center frequency of a notch filter")

Figure 14. Filter ON/OFF setting button

8-2. A calculation of a register

A register set value is displayed when push a [Register Setting] button. When a value out of a setting range is set, error message is displayed, and, a calculation of register setting is not carried out.
AK4646 Register Setting

Register Setting								
FIL3		EQ		HPF		LPF		Close
12H F3A7-0 bits	0xa2	16 H E0A7-0 bits	0×56	1-H F1A7-0 bits	0x1d	2CH F2A.7-0 bits	0xa8	
13HF3AS	0×83	17H E0A $15-8$ bits	0×23	1D F1A13-8 bits	0×14	2DH F2A13-8	0×14	
F3A13-8 bits		18H E087-0 bits	0×07					
14H F3B7-0 bits	0x80	19H EOB13-8 bits	\bigcirc	1EH F187-0 bits	0xc6	2EH F2日7-0 bits	0×50	
15H F3E13-8 bits	0x2e	1 AH E0C7-0 bits		1FH F1813-8 bits	0×21	2FH F2日13-8 bits	0×09	
		18H EOC15-8 bits	0xec					

EQ1		EQ2		EQ3		EQ4		EQ5	
32 H E1A7-0 bits	0x8d	38H E2A7-0 bits	0x8d	3EH E3A7-0 bits	0x8d	44H E4A7-0 bits	0x8d	4AH E5A.7-0 bits	0x8d
33H E1A15-8 bits	0xff	39H E2A.15-8 bits	0xff	3FH E3A.15-8 bits	0xff	45H E4A.15-8 bits	0xff	4EH E5A15-8 bits	0xff
34 H E187-0 bits	0x21	3A.H E287-0 bits	0xc1	40H E3B7-0 bits	0x3c	46H E4E7-0 bits	0x2f	4 CH E5B7-0 bits	0×25
35H E1E15-8 bits	0x35	3EH E2E15-8 bits	0x2f	41H E3E15-8 bits	0×22	47 H E4E15-8 bits	0×09	4DH E5815-8 bits	0x1e
$36 \mathrm{H} \mathrm{E1C7}-0$ bits	0xe6	$3 \mathrm{CH} \mathrm{E2C7-0} \mathrm{bits}$	0xe6	42 H E3C7-0 bits	0xe6	$48 \mathrm{HE4C7}-0$ bits	0xe6	4EH E5C7-0 bits	0xe6
37H E1C15-8 bits	0xe0	3DH E2C15-8 bits	0xe0	43 H E3C15-8 bits	0xe0	49 H E4C15-8 bits	0xe0	4 FH E5C15-8 bits	0xe0

Figure15. A register setting calculation result

When it is as follows that a register set value is updated.
(1) When [Register Setting] button was pushed.
(2) When [Frequency Response] button was pushed.
(3) When [UpDate] button was pushed on a frequency characteristic indication window.
(4) When set ON/OFF of a check button "Notch Filter Auto Correction"

8-3.Indication of a frequency characteristic

A frequency characteristic is displayed when push a [Frequency Response] button. In addition, a register set point is updated then, too.
Change "Frequency Range", and indication of a frequency characteristic is updated when push a [UpDate] button.

Figure16. A frequency characteristic indication result

When it is as follows that a register set point is updated.
(1) When [Register Setting] button was pushed.
(2) When [Frequency Response] button was pushed.
(3) When [UpDate] button was pushed on a frequency characteristic indication window.
(4) When set ON/OFF of a check button "Notch Filter Auto Correction"

8 -4. Automatic revision of center frequency of a notch filter

When set a gain of 5 band Equalizer to -1, Equalizer becomes a notch filter. When center frequency of plural notch filters is adjacent, produce a gap to central frequency (Figure 17). When check "a Notch Filter Auto Correction" button, perform automatic revision of central frequency of a notch filter, display register setting after automatic revision and a frequency characteristic (Figure 18). This automatic revision is availability for Equalizer Band which set a gain to "-1".
(Note) When distance among center frequency is smaller than band width, there is a possibility that automatic revision is not performed definitely. Please confirm a revision result by indication of a frequency characteristic.

Setting of center frequency: $4400 \mathrm{~Hz}, 5000 \mathrm{~Hz}, 5400 \mathrm{~Hz} /$ Band Width : 200 Hz (3 band common)
Figure 17. When there is no revision of center frequency

Setting of center frequency: $4400 \mathrm{~Hz}, 5000 \mathrm{~Hz}, 5400 \mathrm{~Hz} /$ Band Width $: 200 \mathrm{~Hz}$ (3 band common)
Figure 18. When there is revision of center frequency

Revision History				
Date $($ YY/MM/DD $)$	Manual Revision	Board Revision	Reason	Contents
$06 / 06 / 20$	KM084100	0	First Edition	
$06 / 08 / 25$	KM084101	1	Parts Change	\bullet AK4646 Rev.A \rightarrow AK4646 Rev.B \bullet C10 4.7nF $\rightarrow 10 \mathrm{nF}$

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
(a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
(b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.

